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Outline

‣ Using neonatal rodent models to understand premature 
breathing patterns in humans

‣ Understanding how neuroinflammation alters brainstem 
neural networks and modulates autonomic control circuits

‣ Using vagus nerve stimulation (VNS) to prevent central 
neuroinflammation







Premature babies and respiratory control

‣ In the U.S. and U.K., 8–18% of all births (>500,000 babies/year!) are 
premature (< 37 weeks gestational age).

‣ Respiratory problems are common, particularly infant respiratory distress 
syndrome (IRDS) and chronic lung disease (bronchopulmonary dysplasia).

‣ Neurological problems include apnea of prematurity, hypoxic-ischemic 
encephalopathy (HIE), retinopathy of prematurity (ROP), intraventricular 
hemorrhage (IVH).

‣ Premature babies are susceptible to infection, including sepsis, 
pneumonia, and urinary tract infection.

‣ Infection frequently manifests as respiratory perturbations—like apnea, 
tachypnea, and/or periodic breathing.



Inductance plethysmography—apnea of prematurity



Inductance plethysmography—periodic breathing
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Respiratory Reflexes and Neonatal Apnea





Breathing rhythm originates in the medulla oblongata

preBötzinger Complex!



Sagittal section of brainstem



Koizumi et al. J Neuroscience, 2008



Koizumi et al. J Neuroscience, 2008



Morphology of inspiratory-related neurons in the brainstem

Koizumi, et al., 2008, J Neurosci



Maturation affects firing pattern and connectivity

Smith et al. Resp Physiol, 2000



Regions involved in breathing control



http://urbanministryblog.org/wp-content/uploads/2011/01/starbucks-baby2.jpg

This is (sort of!) how apnea of prematurity is treated….





Inflammation and respiratory control

• Perinatal inflammation/infection is a major source of morbidity 
and mortality in the newborn population.

• Neonatal infection can be acquired by aspiration of infected 
amniotic fluid either intra-utero or during vaginal delivery, 
resulting in systemic infection in 1 – 4% of neonates born to 
mothers with chorioamnionitis.

• Infection frequently manifests as respiratory perturbations—
like apnea, tachypnea, or periodic breathing—that are 
challenging to treat.



P11 rats or mice (approximately full-term)



“Pro-inflammatory” Cytokine cascade



Why these cytokines?

• Interleukin-1b (IL-1b): First described in 1972, this cytokine is an important 
early mediator of the inflammatory response and invokes cell proliferation, 
differentiation, and apoptosis. 

• Interleukin-6 (IL-6): An interleukin that acts as both a pro-inflammatory 
cytokine and an anti-inflammatory myokine.

• Tumor necrosis factor a (TNFa): Discovered in the late 60s/early 70s. 
Another acute phase inflammatory cytokine. Also known to modulate 
synaptic activity in the CNS. 

All three of these are early, acute phase pro-inflammatory cytokines that 
initiate the immune response. They are considered “classic”  pro-
inflammatory cytokines—which is why we have focused on them. 

They are also trophic factors during development!



Methods – in vivo rats (postnatal day 10–11)

Cathy Mayer and Brooke Boyer

• Ketamine/xylazine or 
isoflurane

• LPS @ 0.5 – 1.0 µg/g or
Saline

• In vivo (monitor for 2 to 4 
hours

• In vitro/staining (harvest after 
4 hours)



Inflammation alters chemoreflexes

Balan et al., Resp. Physiol. Neuriobiol., 2011 



Expiratory time (Te), is reduced in Control vs. LPS-exposed rats

Gresham et al. Resp Physiol & Neurobiol, 2011



Acute inflammatory up-regulation: The canonical model



Acute inflammatory up-regulation: The canonical model



Acute inflammatory up-regulation: The canonical model



Acute inflammatory up-regulation: The canonical model



Acute inflammatory up-regulation: The canonical model



Acute inflammatory up-regulation: Our “new” model

Jafri et al. Resp Physiol Neurobiol, 2013

ATP



Hypothesis

• Inflammation-induced cytokine release signals the production 
of proinflammatory cytokines in the brainstem and this alters 
signaling throughout the CNS.

• LPS induces a cascade of cytokine (IL-1b, IL-6, TNFa and 
others) release from neurons and microglia.

• These cytokines modulate processing of vagal afferent input 
at the nTS, rhythm-generation at the pBC, and motor output 
at the XII nucleus.

• Release of prostaglandins (e.g. PGE2) then changes synaptic 
processing at this first-order input to the CNS.



Cytokines and purines modify synaptic transmission normally

Santello et al., Neuron 2011



LPS-induced IL-1β message in respiratory regions of brainstem

Jafri et al. Resp Physiol Neurobio (2013)



IL-1β mRNA expression increased in respiratory areas

Jafri et al. Resp Physiol Neurobio (2013)



IL-1β mRNA is expressed in XII motoneurons

Jafri et al. Resp Physiol Neurobio (2013)



Iba-1 (activated microglia) is greater in XII after LPS

Jafri et al. Resp Physiol Neurobio (2013)



Microglia appear NOT to express IL-1b

Jafri et al. Resp Physiol Neurobiol, 2013



Hypoxia alters IL-1b signaling in the brainstem breathing circuitry



Acute inflammation alters inflammatory drive in the CNS

& IX



Changes in nTS neural dynamics after inflammation/lung injury

Getsy et al. Resp Physiol Neurobiol. 2019 



Changes in nTS neural dynamics after inflammation/lung injury

Getsy et al. Resp Physiol Neurobiol, 2019 



nTS neurons have smaller sEPSCs after lung injury

Getsy et al. Resp Physiol Neurobiol, 2019



Changes in nTS sEPSCs activity after lung injury

Getsy et al. Resp Physiol Neurobiol. 2019



nTS evoked EPSCs also show reduced amplitude

Paulina Getsy



PGE2 alters breathing pattern in vitro



How do cytokines alter neural activity?



How do cytokines alter neural activity?



How do cytokines alter neural activity?



How do cytokines alter neural activity?

PGE2



When CNS injury occurs, what treatment 
options are available and how do we assess 

and promote “good,” anti-inflammatory 
process while attenuating “bad,” pro-

inflammatory responses?



Can we use something besides antibiotics, 
corticosteroids, or pharmacological blockade to 
reduce/prevent neuro-inflammation in the 

CNS? 



The anti-inflammatory reflex

Tracey KJ, Nature, 2002



The Vagus nerve

• The vagus nerve provides extensive afferent & efferent  
innervation of the viscera and is a key interface between 
CNS circuits and the autonomic control circuitry of the 
brainstem. 

• The vagus is a mixed autonomic nerve originating in the 
medulla oblongata and projects bilaterally along the neck 
(bundled with the carotid artery) to the esophagus before 
branching to innervate the viscera. 

• The anatomy of the vagus and its projections have been 
discovered through tract tracing or gross dissection.

• The physiology of the vagus is still an area of active 
investigation.



NTS = nucleus tractus solitarius
NA = nucleus ambiguus
pBC = preBötzinger Complex 
(rhythm generator)

The Vagus nerve



Vagus Nerve Stimulation

• Inflammation stimulates the release of pro-inflammatory 
cytokines which activate vagal afferents and induce 
central neuroinflammation

• Vagal c-fibers are implicated in this inflammatory 
upregulation and their first-order synapse is in the 
nucleus tractus solitarius (NTS)

• Vagal efferents are implicated in anti-inflammatory 
responses via the cholinergic anti-inflammatory pathway

• We have previously shown that vagus nerve stimulation 
(VNS) modulates pro-inflammatory cytokine expression 
in the central nervous system (CNS) using high 
frequency stimulation. 

• However, the optimal VNS parameters to reduce 
inflammation are not yet known.



Vagal nerve stimulation to “knock down” cytokine upregulation

Johnson et al. Resp Physiol Neurobiol, 2016

X



FDA-approved clinical uses of VNS

• Treatment of epilepsy. In 1988, the first chronic 
implantable stimulator was used to treat drug-resistant 
epilepsy. 

• VNS has been approved by the FDA since 1997 to treat 
partial onset seizures that are drug-resistant. 

• Treatment of depression. Chronic or severe depression 
affects up to 1.5% of the general population, and many 
of these patients obtain little relief from pharmaceutical 
treatment.  

• Although VNS was not originally developed to treat 
depression, the FDA approved VNS for the treatment of 
chronic or recurring depression in 2005. 



Research uses of VNS

• Sepsis. Sepsis is a multibillion dollar health care burden 
typically due to systemic bacterial infection and chronic 
activation of the pro-inflammatory cytokine cascade. 
VNS is being used experimentally to quash runaway 
inflammation 

• Pain management. The applications of VNS also 
extends to disorders associated with chronic or 
intermittent bouts of pain such as fibromyalgia and 
migraines.

• Cardiovascular disease. VNS must alter cardiovascular 
control due to the convergence of inputs in the 
autonomic control centers of the brain stem, but for how 
long and to what extent is unknown. The descending 
cardiac branch of the vagus is key for normal cardiac 
function.





VNS and cytokines



VNS and cytokines 



Methods



Methods



IL-6 and TNFa are reduced after VNS

Johnson et al. Resp Physiol Neurobiol, 2016



So if we use “typical” clinical VNS 
parameters (current/frequency) we can 

reduce cytokine expression.

But, what are the OPTIMAL stimulation 
parameters to reduce inflammation? 



VNS attenuates IL-1b across most frequencies

Cacho et al. submitted to Peds Research



VNS attenuates TNFa at higher stimulation frequencies

Cacho et al. submitted to Peds Research



IL-6 is a confusing bugger in response to VNS! 

Cacho et al. submitted to Peds Research



The alarmin, HMGB1, exhibits a dose-dependent decrease 
with VNS

Cacho et al. submitted to Peds Research



Future Directions

‣ The likelihood that we will get IRB approval to implant a 
vagus nerve stimulator in a preterm infant is vanishingly 
small!

‣ Transcutaneous stimulation would allow us to stimulate 
non-invasively and attempt to get sufficient current to the 
vagus nerve and have an impact on inflammation. 

‣ An even more interesting option in the clinic would be the 
use of transcutaneous auricular vagus nerve stimulation 
(aVNS) which is non-invasive and easy to use in a clinical 
setting. 



Can we modify the method of VNS to use non-invasive stimulators?



Transcutaneous Auricular Vagus Nerve Stimulation (aVNS)

Yap JYY et al. Front Neuroscience, 2020 



Transcutaneous 

auricular vagus 

stimulation

Stavrakos S et al., JACC: Clinical Electrophysiology, 2020



aVNS stimulators

Yap JYY et al. Front Neuroscience, 2020 



aVNS protocols that replicate some of our work….

Sclocco R et al. Brain Stimulation, 2020



Summary

‣ Our laboratory has been focused on translational applications 
of developmental neurophysiology in neonates. 

‣ Intratracheal LPS stimulates IL-1b production in the 
brainstem (nTS, RVLM, and XII) of rodents, activating the 
COX2 pathway and, ultimately, releasing prostaglandins and 
other chemokines/cytokines that alter neural network activity.

‣ Bioelectric stimulation may be valuable in controlling acute or 
chronic inflammation and, using aVNS, may be easily 
incorporated into current clinical practice.



Thank you for your 
attention!

Questions??
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